1,014 research outputs found

    Stabilization of Unmanned Air Vehicles over Wireless Communication Channels

    Get PDF
    This paper addresses the stabilization problem for unmanned air vehicles over digital and wireless communication channels with time delay. In particular, the case with band-limited channels is considered. An observer-based state feedback control policy is employed to stabilize the linear control system of unmanned air vehicles. A sufficient condition on the minimum data rate for mean square stabilization is derived, and a new quantization, coding, and control policy is presented. Simulation results show the validity of the proposed scheme

    Orbital density wave induced by electron-lattice coupling in orthorhombic iron pnictides

    Full text link
    In this paper we explore the magnetic and orbital properties closely related to a tetragonal-orthorhombic structural phase transition in iron pnictides based on both two- and five-orbital Hubbard models. The electron-lattice coupling, which interplays with electronic interaction, is self-consistently treated. Our results reveal that the orbital polarization stabilizes the spin density wave (SDW) order in both tetragonal and orthorhombic phases. However, the ferro-orbital density wave (F-ODW) only occurs in the orthorhombic phase rather than in the tetragonal one. Magnetic moments of Fe are small in the intermediate Coulomb interaction region for the striped antiferromangnetic phase in the realistic five orbital model. The anisotropic Fermi surface in the SDW/ODW orthorhombic phase is well in agreement with the recent angle-resolved photoemission spectroscopy experiments. These results suggest a scenario that the magnetic phase transition is driven by the ODW order mainly arising from the electron-lattice coupling.Comment: 21 pages, 10 figure

    A Multi-Agent-Based System for eProcurement

    Get PDF
    E-procurement has become an important function of enterprise information systems. The process of e-procurement includes automatic definition of product requirements, search and selection for suppliers, negotiation and contracting with suppliers. In this paper, we propose a novel agentbased architecture for e-procurement system, in which various agents take such responsibilities as negotiating and contracting. Moreover, the architecture that we propose can monitor transaction status and enhance the flexibility to handle unexpected exceptions, thus leading to agile procurement management

    Uncertainty Quantification of Geo-Magnetically Induced Currents in UHV Power Grid

    Get PDF
    Geo-magnetically induced currents (GICs) have attracted more attention since many Ultra-High Voltage (UHV) transmission lines have been built, or are going to be built in the world. However, when calculating GICs based on the classical model, some input parameters, such as the earth conductivity and dc resistances of the grid, are uncertain or very hard to be determined in advance. Taking this into account, the uncertainty quantification (UQ) model of the geo-electric fields and GICs is proposed in this paper. The UQ of the maximums of the geo-electric fields and GICs during storms is carried out based on the polynomial chaos (PC) method. The results of the UHV grid, 1000 kV Sanhua Grid, were presented and compared to the Monte Carlo method. The total Sobol indices are calculated by using the PC expansion coefficients. The sensitivities of geo-electric fields and GICs to the input variables are analyzed based on the total Sobol indices. Results show that the GICs and geo-electric fields can be effectively simulated by the proposed model, which may offer a better understanding of the sensitivities to input uncertain variables and further give a reasonable evaluation of the geomagnetic threat to the grid

    Quantized Feedback Control of Network Empowerment Ammunition with Data-Rate Limitations

    Get PDF
    This paper investigates quantized feedback control problems for network empowerment ammunition, where the sensors and the controller are connected by a digital communication network with data-rate limitations. Different from the existing ones, a new bit-allocation algorithm on the basis of the singular values of the plant matrix is proposed to encode the plant states. A lower bound on the data rate is presented to ensure stabilization of the unstable plant. It is shown in our results that, the algorithm can be employed for the more general case. An illustrative example is given to demonstrate the effectiveness of the proposed algorithm

    Quantized Feedback Control for Networked Control Systems Under Communication Constraints

    Get PDF
    This paper investigates the feedback stabilization problem for networked control systems (NCSs) with unbound process noise, where sensors and controllers are connected via noiseless digital channels carrying a finite number of bits per unit time. A sufficient condition for stabilization of NCSs, which relies on a variable-rate digital link used to transmit state measurements, is derived. A lower bound of data rates, above which there exists a quantization, coding and control scheme to guarantee both stabilization and a prescribed control performance of the unstable discrete-time plant, is presented. An illustrative example is given to demonstrate the effectiveness of the proposed method

    Sulfadiazine Sodium Ameliorates the Metabolomic Perturbation in Mice Infected with Toxoplasma gondii

    Get PDF
    In this study, we analyzed the global metabolomic changes associated with Toxoplasma gondii infection in mice in the presence or absence of sulfadiazine sodium (SDZ) treatment. BALB/c mice were infected with T. gondii GT1 strain and treated orally with SDZ (250 g/ml in water) for 12 consecutive days. Mice showed typical manifestations of illness at 20 days postinfection (dpi); by 30 dpi, 20% had survived and developed latent infection. We used ultraperformance liquid chromatography-mass spectrometry to profile the serum metabolomes in control (untreated and uninfected) mice, acutely infected mice, and SDZ-treated and infected mice. Infection induced significant perturbations in the metabolism of-linolenic acid, purine, pyrimidine, arginine, tryptophan, valine, glycerophospholipids, and fatty acyls. However, treatment with SDZ seemed to alleviate the serum metabolic alterations caused by infection. The restoration of the serum metabolite levels in the treated mice was associated with better clinical outcomes. These data indicate that untargeted metabolomics can reveal biochemical pathways associated with restoration of the metabolic status of T. gondii-infected mice following SDZ treatment and could be used to monitor responses to SDZ treatment. This study provides a new systems approach to elucidate the metabolic and therapeutic effects of SDZ in the context of murine toxoplasmosis. K E Y W O R D S Toxoplasma gondii, biomarkers, metabolomics, mice, serum metabolites, sulfadiazine sodium Toxoplasma gondii, an obligate intracellular protozoan parasite, is highly prevalent in warm-blooded animals and humans (1). T. gondii comprises three clonal lineages (type I, type II, and type III) (2). Despite 98% genetic similarity, dramatic differences in virulence exist among strains belonging to these T. gondii genotypes (3). Humans acquire infection mainly by ingesting undercooked meat containing tissue cysts or oocysts from contaminated water (4). Acute infection with this parasite is mediated by the aggressive, fast-replicating, tachyzoite stage, which can cause encephalitis or retinochoroiditis. In addition, reactivation of the latent form (i.e., bradyzoites-containing cysts) of T. gondii can cause life-threatening conditions and even death in immuno-compromised individuals (5)
    • …
    corecore